\square

Question Paper Code : X 60449

B.E./B.Tech. DEGREE EXAMINATIONS, NOV./DEC. 2020

Fifth Semester

Electronics and Communication Engineering EC 2301/EC 51 - DIGITAL COMMUNICATION
(Regulations 2008)
(Common to PTEC 2301 - Digital Communication for B.E. (Part-Time) Fourth Semester - Electronics and Communication Engineering - Regulations 2009)

Time : Three Hours
Maximum : 100 Marks
Answer ALL questions
PART - A

1. Draw a typical digital communication system.
2. How can BER of a system be improved ?
3. State Nyquist sampling theorem.
4. Why is quantisation needed in coding the samples?
5. Define constraint length of a convolutional code.
6. State any two requirements of line codes.
7. Mention two properties of matched filter.
8. What is the use of eye pattern?
9. A BPSK system makes errors at the average rate of 100 errors per day. Data-rate is 1 kbps . The single-sided noise power spectral density is $10^{-10} \mathrm{~W} / \mathrm{Hz}$. Assuming the system to be wide sense stationary, what is the average bit error probability.
10. What is meant by memoryless modulation?

X 60449
PART - B
11. a) i) Explain the various analog pulse communication system describing their advantages and drawbacks.
ii) Describe how channels can be classified and briefly explain each.
(OR)
b) i) Describe the elements of a digital communication system.
ii) Explain the mathematical models of various communication channels.
12. a) Describe temporal and spectral waveform encoding methods.
(OR)
b) Explain the process of quantization and obtain an expression for signal to quantization ratio in the case of a uniform quantizer.
13. a) Derive the expression for power spectral density of unipolar NRZ line code. Hence discuss its characteristics.
(OR)
b) i) Design a block code for a message block of size eight that can correct for single errors.
ii) Design a convolutional coder of constraint length 6 and rate efficiency $\frac{1}{2}$. Draw its tree diagram and trellis diagram.
14. a) i) Explain the bit synchronisation.
ii) Write notes on eye diagram.
(OR)
b) Discuss Nyquist solutions to eliminate ISI.
15. a) Derive the expressions for bit error probability of the following receivers :
i) Coherent ASK
ii) Non-coherent FSK.
(OR)
b) Derive the expressions for the bit error probability of the following receivers.
i) QPSK.
ii) Coherent PSK.

